C	Question		Answer	Marks	Guidance
1 A A	(a)	(i)	(atom releases energy when) electron moves from <u>high to low level</u> energy released is in form of a <u>photon</u> possible transitions are between $n=3$ and $n=1$, $n=3$ and $n=2$, $n=2$ and $n=1$	B1 B1 B1	can be illustrated on diagram by downward arrow connecting levels can be illustrated on diagram
	(a)	(ii)1	$\varepsilon = hc/\lambda$ = 6.63 x 10 ⁻³⁴ x 3.0 x 10 ⁸ / 6.56 x 10 ⁻⁷ = 3.0(3) x 10 ⁻¹⁹ (J)	C1 A1	choosing formula and substitution answer accept 3 x 10 ⁻¹⁹ (J) (no SF error)
	(a)	(ii)2	from $n = 3$ to $n = 2$	B1	allow between n = 3 and n = 2 allow n = 2 to n = 3 or between n = 2 and n = 3 if there is no contradiction with answer given in 7ai
	(b)	(i)	d sin $\theta = \lambda$ d sin $11.4^{\circ} = 6.56 \times 10^{-7}$ d = $6.56 \times 10^{-7}/0.198$ d = 3.3×10^{-6} (m)	C1 C1 A1	choosing formula and substitution manipulation and sin 11.4° = 0.198
	(b)	(i)	$1/d = 3 \times 10^5 \text{ m}^{-1} = 300 \text{ mm}^{-1}$	A1	ecf b(i)1; allow 301 or 302 as data given to 3 sig figs
	(b)	(ii)	2 rays, one either side of normal to grating at about 8°, say	B1	accept any sensible angle
			Total	11	

Question		n	Expected Answers	M	Additional Guidance	
2			•			
	а	i	photoelectric effect/emission	B1		
		ii1	the minimum energy (required) to release an electron (from the	B1		
			surface of the metal)			
		ii2	$3.5 \times 10^{-19} = 6.6 \times 10^{-34} \text{ f}$	C1		
			$f = 5.3 \times 10^{14} (Hz)$	A1		
		iii	$\varepsilon = hc/\lambda = 6.6 \times 10^{-34} \times 3.0 \times 10^{8} / 4.2 \times 10^{-7}$	C1	no second mark unless there is evidence of the	
			$= 4.7 \times 10^{-19} (J)$	A1	calculation being done	
		iv	$\frac{1}{2}$ mv ² = 4.7 x 10 ⁻¹⁹ – 3.5 x 10 ⁻¹⁹	C1	mark for using the p.e. equation	
			$= 1.2 \times 10^{-19} (J)$	A1	accept 1.5 x 10 ⁻¹⁹ from those using 5 x 10 ⁻¹⁹ J	
	b	i1	12 (eV)	B1		
		ii2	$\varepsilon = eV = 12 \times 1.6 \times 10^{-19} = 1.92 \times 10^{-18} (J)$	A1	ecf(b)(i)1	
		ii	$\frac{1}{2}$ mv ² = 2.0x 10 ⁻¹⁸	C1	$1/2 \text{mv}^2 = 12 \text{ scores } 0/3$	
			$v^2 = 2 \times 2.0 \times 10^{-18}/9.1 \times 10^{-31} = 4.4 \times 10^{12}$	C1	accept 1.9 x 10 ⁻¹⁸ from (b)(i)2	
			$v = 2.1 \times 10^6 \text{ (m s}^{-1})$	A1	giving $v = 2.0(5) \times 10^6$	
	С		e's emitted/s = $1.2 \times 10^{-8}/5 \times 10^{-19} = 2.4 \times 10^{10}$	C1	using 4.7 x 10 ⁻¹⁹ gives 2.55 x 10 ¹⁰	
			current = $2.4 \times 10^{10} \times 1.6 \times 10^{-19}$	C1	omitting 1% scores as a POT error	
			$= 3.8 \times 10^{-9}$ (A) to 4.1×10^{-9} (A)	A1	allow 4 nA as the question states 'estimate'	
			Total question 4	16		

Question		tion	Expected Answers		Additional Guidance
3	(a)	(i)	line spacing $d = 1/(300 \times 1000)$ (= 3.3 x 10 ⁻⁶ (m))	B1	look for clear reasoning to award mark
		(ii)	$\sin \theta = \lambda/d$ = 6.3 x 10 ⁻⁷ /3.3 x 10 ⁻⁶ = 0.19 θ = 11 degrees	C1 C1 A1	rounding error of 0.2 here gives 11.9° 11.9° gets 2 marks
		(iii)	spots can be seen where $n=d\sin\theta/\lambda$ maximum n when $\sin\theta=1$ (giving $n=5.3$) so $n=5$ can be seen thus 5 spots on either side of straight through + straight through = 11	B1 B1 B1	accept basic idea of orders for first mark N.B. calculation not necessary
	(b)	(i) (ii)	$\varepsilon = hc/\lambda = 6.6 \times 10^{-34} \times 3.0 \times 10^{8}/6.3 \times 10^{-7}$ = 3.14 x 10 ⁻¹⁹ (J) 5.0 x 10 ⁻⁴ /3.14 x 10 ⁻¹⁹ = 1.6 x 10 ¹⁵	C1 A1 C1 A1	accept 3.2 x 10 ⁻¹⁹ (J) ecf from b(i)1
	(c)	(i)	Electrons behave as waves/have a wavelength diffraction observable because gaps/atoms are similar to wavelength of electrons regular pattern of atoms acts as a grating allowing constructive interference to produce pattern on screen/AW rings occur because atomic 'crystals' at all possible orientations to beam/AW	B1 B1 B1 B1 B1	max 2 out of next 4 marking points can gain first 'waves' mark here as well as second mark if first line not written explicitly
		(ii) 1 2	$\lambda = h/mv = 6.63 \times 10^{-34}/9.1 \times 10^{-31}v$ $v = 6.63 \times 10^{-34}/9.1 \times 10^{-31} \times 5.0 \times 10^{-11}$ $v = 1.5 \times 10^{7} \text{ (m s}^{-1)}$ $\frac{1}{2}mv^{2} = eV$ $\frac{1}{2} \times 9.1 \times 10^{-31} \times 2.25 \times 10^{14} = 1.6 \times 10^{-19}V$ $V = 6.4 \times 10^{2} \text{ (V)}$	C1 A1 C1 C1 A1	using 6.6 instead of 6.63 gives 1.45×10^7 using v = 1.45×10^7 gives 600 V
			Total question 6	19	