Question			Answer	Marks	Guidance
1 A A A	(a)	(i)	(atom releases energy when) electron moves from high to low level energy released is in form of a photon possible transitions are between $\mathrm{n}=3$ and $\mathrm{n}=1, \mathrm{n}=3$ and $\mathrm{n}=2, \mathrm{n}=2$ and $\mathrm{n}=1$	B1 B1 B1	can be illustrated on diagram by downward arrow connecting levels can be illustrated on diagram
	(a)	(ii)1	$\begin{aligned} \varepsilon & =\mathrm{hc} / \lambda \\ & =6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 6.56 \times 10^{-7} \\ & =3.0(3) \times 10^{-19}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	choosing formula and substitution answer accept $3 \times 10^{-19}(\mathrm{~J})$ (no SF error)
	(a)	(ii)2	from $\mathrm{n}=3$ to $\mathrm{n}=2$	B1	allow between $\mathrm{n}=3$ and $\mathrm{n}=2$ allow $\mathrm{n}=2$ to $\mathrm{n}=3$ or between $\mathrm{n}=2$ and $\mathrm{n}=3$ if there is no contradiction with answer given in 7ai
	(b)	(i)	$\begin{aligned} & d \sin \theta=\lambda \quad d \sin 11.4^{0}=6.56 \times 10^{-7} \\ & d=6.56 \times 10^{-7} / 0.198 \\ & d=3.3 \times 10^{-6}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	choosing formula and substitution manipulation and $\sin 11.4^{\circ}=0.198$
	(b)	(i)	$1 / \mathrm{d}=3 \times 10^{5} \mathrm{~m}^{-1}=300 \mathrm{~mm}^{-1}$	A1	ecf b(i)1; allow 301 or 302 as data given to 3 sig figs
	(b)	(ii)	2 rays, one either side of normal to grating at about 8°, say	B1	accept any sensible angle
			Total	11	

Question			Expected Answers	M	Additional Guidance
2					
	a	i	photoelectric effect/emission	B1	
		ii1	the minimum energy (required) to release an electron (from the surface of the metal) $\begin{aligned} & 3.5 \times 10^{-19}=6.6 \times 10^{-34} \mathrm{f} \\ & \mathrm{f}=5.3 \times 10^{14}(\mathrm{~Hz}) \end{aligned}$	B1 C1 A1	
		iii	$\begin{aligned} & \varepsilon=\mathrm{hc} / \lambda=6.6 \times 10^{-34} \times 3.0 \times 10^{8} / 4.2 \times 10^{-7} \\ & =4.7 \times 10^{-19}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	no second mark unless there is evidence of the calculation being done
		iv	$\begin{aligned} & 1 / 2 \mathrm{mv}^{2}=4.7 \times 10^{-19}-3.5 \times 10^{-19} \\ & =1.2 \times 10^{-19}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	mark for using the p.e. equation accept 1.5×10^{-19} from those using $5 \times 10^{-19} \mathrm{~J}$
	b	$\begin{array}{\|l\|} \hline \text { i1 } \\ \text { ii2 } \\ \hline \end{array}$	$\begin{aligned} & 12(\mathrm{eV}) \\ & \varepsilon=\mathrm{eV}=12 \times 1.6 \times 10^{-19}=1.92 \times 10^{-18}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\operatorname{ecf(b)(i)1~}$
		ii	$\begin{aligned} & 1 / 2 \mathrm{~m}^{2}=2.0 \times 10^{-18} \\ & \mathrm{v}^{2}=2 \times 2.0 \times 10^{-18} / 9.1 \times 10^{-31}=4.4 \times 10^{12} \\ & \mathrm{v}=2.1 \times 10^{6}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	$1 / 2 \mathrm{mv}^{2}=12$ scores 0/3 accept 1.9×10^{-18} from (b)(i)2 giving $v=2.0(5) \times 10^{6}$
	c		$\begin{aligned} & \text { e's emitted/s }=1.2 \times 10^{-8} / 5 \times 10^{-19}=2.4 \times 10^{10} \\ & \text { current }=2.4 \times 10^{10} \times 1.6 \times 10^{-19} \\ & =3.8 \times 10^{-9}(\mathrm{~A}) \text { to } 4.1 \times 10^{-9}(\mathrm{~A}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	using 4.7×10^{-19} gives 2.55×10^{10} omitting 1% scores as a POT error allow 4 nA as the question states 'estimate'
			Total question 4	16	

Question			Expected Answers	Marks	Additional Guidance
3	(a)	(i)	line spacing d $=1 /(300 \times 1000) \quad\left(=3.3 \times 10^{-6}(\mathrm{~m})\right)$	B1	look for clear reasoning to award mark
		(ii)	$\begin{aligned} \sin \theta & =\lambda / \mathrm{d} \\ & =6.3 \times 10^{-7} / 3.3 \times 10^{-6}=0.19 \\ \theta=11 & \text { degrees } \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	rounding error of 0.2 here gives 11.9° 11.9° gets 2 marks
		(iii)	spots can be seen where $n=d \sin \theta / \lambda$ maximum n when $\sin \theta=1$ (giving $n=5.3$) so $n=5$ can be seen thus 5 spots on either side of straight through + straight through $=11$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept basic idea of orders for first mark N.B. calculation not necessary
	(b)	(i) (ii)	$\begin{aligned} & \varepsilon=\mathrm{hc} / \lambda=6.6 \times 10^{-34} \times 3.0 \times 10^{8} / 6.3 \times 10^{-7} \\ & =3.14 \times 10^{-19}(\mathrm{~J}) \\ & 5.0 \times 10^{-4} / 3.14 \times 10^{-19} \\ & =1.6 \times 10^{15} \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { accept } 3.2 \times 10^{-19}(\mathrm{~J}) \\ & \text { ecf from } \mathrm{b}(\mathrm{i}) 1 \end{aligned}$
	(c)	(i)	Electrons behave as waves/have a wavelength diffraction observable because gaps/atoms are similar to wavelength of electrons regular pattern of atoms acts as a grating allowing constructive interference to produce pattern on screen/AW rings occur because atomic 'crystals' at all possible orientations to beam/AW	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	max 2 out of next 4 marking points can gain first 'waves' mark here as well as second mark if first line not written explicitly
		(ii) 1 2	$\begin{aligned} & \lambda=\mathrm{h} / \mathrm{mv}=6.63 \times 10^{-34} / 9.1 \times 10^{-31} \mathrm{v} \\ & \mathrm{v}=6.63 \times 10^{-34} / 9.1 \times 10^{-31} \times 5.0 \times 10^{-11} \\ & \mathrm{v}=1.5 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & 1 / 2 \mathrm{mv}^{2}=\mathrm{eV} \\ & 1 / 2 \times 9.1 \times 10^{-31} \times 2.25 \times 10^{14}=1.6 \times 10^{-19} \mathrm{~V} \\ & \mathrm{~V}=6.4 \times 10^{2}(\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \\ & \text { A1 } \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	using 6.6 instead of 6.63 gives 1.45×10^{7} using $v=1.45 \times 10^{7}$ gives 600 V
			Total question 6	19	

